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Abstract: A fully connected deep neural network (FCDN) clear-sky mask (CSM) algorithm (FCDN_
CSM) was developed to assist the FCDN-based Community Radiative Transfer Model (FCDN_CRTM)
to reproduce the Visible Infrared Imaging Radiometer Suite (VIIRS) clear-sky radiances in five thermal
emission M (TEB/M) bands. The model design was referenced and enhanced from its earlier version
(version 1), and was trained and tested in the global ocean clear-sky domain using six dispersion
days’ data from 2019 to 2020 as inputs and a modified NOAA Advanced Clear-Sky Processor over
Ocean (ACSPO) CSM product as reference labels. The improved FCDN_CSM (version 2) was further
enhanced by including daytime data, which was not collected in version 1. The trained model
was then employed to predict VIIRS CSM over multiple days in 2020 as an accuracy and stability
check. The results were validated against the biases between the sensor observations and CRTM
calculations (O-M). The objectives were to (1) enhance FCDN_CSM performance to include daytime
analysis, and improve model stability, accuracy, and efficiency; and (2) further understand the model
performance based on a combination of the statistics and physical interpretation. According to the
analyses of the F-score, the prediction result showed ~96% and ~97% accuracy for day and night,
respectively. The type Cloud was the most accurate, followed by Clear-Sky. The O-M mean biases
are comparable to the ACSPO CSM for all bands, both day and night. The standard deviations (STD)
were slightly degraded in long wave IRs (M14, M15, and M16), mainly due to contamination by
a 3% misclassification of the type Cloud, which may require the model to be further fine-tuned to
improve prediction accuracy in the future. However, the consistent O-M means and STDs persist
throughout the prediction period, suggesting that FCDN_CSM version 2 is robust and does not have
significant overfitting. Given its high F-scores, spatial and long-term stability for both day and night,
high efficiency, and acceptable O-M means and STDs, FCDN_CSM version 2 is deemed to be ready
for use in the FCDN_CRTM.

Keywords: fully connected “Deep” neural network (FCDN); clear-sky mask (CSM); community ra-
diative transfer model (CRTM); deep learning; machine learning; artificial neural network (ANN); the
visible infrared imaging radiometer suite (VIIRS); Advanced Clear-Sky Processor over Ocean (ACSPO)

1. Introduction

A clear-sky mask (CSM) identifies each sensor pixel within a coverage region as
clear or cloudy. It is an important capability for many downstream level-2 products, such
as sea surface temperature (SST) [1] and land surface temperature (LST) [2] sensors. In
addition, it is often used to improve the accuracy of sensor radiometric biases [3–6] and
to assist in data assimilation for numeric weather prediction (NWP) models [7], where
the reference or first guess data are commonly generated by the Community Radiative
Transfer Model (CRTM) [8,9] at the National Oceanic and Atmospheric Administration
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(NOAA). The high resolution CSM [10] was developed by NOAA, following the availability
of new generation sensors, such as the Visible Infrared Imaging Radiometer Suite (VIIRS)
onboard the Suomi National Polar-orbiting Partnership (S-NPP) or other satellites in the
Joint Polar Satellite System (JPSS), and the advanced baseline imager (ABI) onboard the
geostationary operational environmental satellite-R (GOES-R). Furthermore, the NOAA
Advanced Clear-Sky Processor over Oceans (ACSPO) CSM [1,3–6] was developed for ocean
clear-sky applications and has been well validated for more than a decade. All of these
CSM algorithms are based on the radiative characteristics of various cloud formations,
and use multiple empirical thresholds together with multiple tests under various spatial
and temporal conditions combined with sensor measurements to achieve cloud and clear-
sky identification [1,10–12]. The physical-based CSM algorithm has been developed and
validated for over 20 years since the earliest CSM product based on the NOAA Advanced
Very High Resolution Radiometer (AVHRR)—Clouds from AVHRR-Phase I (CLAVR-1) [13]
was released, and has been comprehensively applied in remote sensing, atmosphere,
and climate research. However, the complicated physical-based CSM algorithms are
computationally consuming and the empirical thresholds are very dependent on the
specific sensor to be utilized, resulting in the need to re-test and re-design for each new
sensor [14,15].

With the evolution of artificial intelligence (AI), the approach used in artificial neural
networks (ANN) has gradually become a popular algorithm and is applied in most sci-
entific and technical fields, including atmosphere and ocean remote sensing and climate
research [16–18]. NOAA’s AI scientists have explored using AI applications in several areas,
such as satellite data calibration; forward operator simulation through the radiative trans-
fer model (RTM); physical inversion; data assimilation and data fusion; and post-forecast
correction, including extreme weather events [19]. As stated in the NOAA AI Strategy,
NOAA’s AI “will dramatically expand the application of AI in every NOAA mission area
by improving the efficiency, effectiveness, and coordination of AI development and usage
across the agency” [20].

Using a simple, statistical, nonlinear approximation instead of a complicated physical-
based model in ANNs results in a more computationally efficient method to achieve
a similar result to those of the physical-based model, without significant loss of accu-
racy [16–18]. In recent years these advantages have attracted an increasing number of
remote sensing scientists to explore AI-based CSM algorithms [14,15,21] by designing vari-
ous machine learning architectures, such as random forest (RF), support vector machine,
ANN, and convolution neural network; training the models by using selected effective
sensor measurements and geophysical conditions together with atmosphere and surface
ancillary data; and predicting CSM with the well-trained model.

A fully connected deep neural network (FCDN) algorithm applied for VIIRS clear-
sky mask (FCDN_CSM) [14] was developed that efficiently identifies clear-sky pixels for
real-time monitoring of the VIIRS observation minus CRTM simulation (O-M) biases for
five thermal emission M bands. The monitoring of O-M biases is a key component of the
Integrated Calibration/Validation System (ICVS, https://www.star.nesdis.noaa.gov/icvs)
established by the NOAA Center for Satellite Applications and Research (STAR), which
uses an updated ACSPO CSM as clear-sky identification [22]. Hereafter, this FCDN_CSM
will be referred to as version 1 (v1). The FCDN_CSM v1 was trained by ten continuous
days of S-NPP VIIRS measurements, together with atmosphere and surface ancillary
data as model inputs, which are extracted from the European Centre for Medium-Range
Weather Forecasts (ECMWF, https://www.ecmwf.int) and Canadian Meteorology Centre
(CMC) SST product (https://podaac.jpl.nasa.gov/dataset/CMC0.1deg-CMC-L4-GLOB-v3
.0). The corresponding ACSPO CSM data was used as reference labels. The result showed
that the FCDN_CSM not only has super efficiency, high prediction accuracies (97% for
Cloud, 93% for Clear-Sky, and more than 80% for other types), and comparable O-M mean
biases and standard deviation (STDs) with ACSPO, but also has sensor migration capability,
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whereby the model trained by S-NPP data can be directly used to predict NOAA-20 CSM
without significant accuracy loss.

In addition, a FCDN algorithm with the Community Radiative Transfer Model
(FCDN_CRTM) is being developed to explore the efficiency and accuracy of reproducing
the Visible Infrared Imaging Radiometer Suite (VIIRS) clear-sky radiances in five TEB/M
bands [23], which require a fast, accurate, and stable CSM to improve its efficiency. There-
fore, in this paper, we report on further enhancements to FCDN_CSM that improve the
model’s stability and also include daytime data analysis. The objectives were to develop a
fast and robust FCDN-CSM model that is ready for the FCDN_CRTM to predict clear-sky
radiances, and to better understand model performance based on a combination of the
statistics and physical interpretation. This newly developed model is hereafter referred
to as FCDN_CSM version 2 (v2). Section 2 discusses the methodology of this research.
A summary of FCDN_CSM v1 is provided and then we discuss v2 in detail, together
with data preprocessing. Section 3 then demonstrates model validation by F-Score; VIIRS
O-M biases with clear-sky identification; and long-term performance. Thereafter, Section 4
discusses potential improvements to the model prediction, and Section 5 provides the
conclusion.

2. Methodology

In this section, we first summarize the FCDN_CSM v1 and then discuss v2 architecture
and data preprocessing in detail.

2.1. Summary of FCDN_CSM Version 1

FCDN_CSM v1 was designed as a simple FCDN-based architecture, including two
hidden layers with 40× 90 neurons. Instead of a complexed combination of the time, space,
and spectral measurements in the physical-based model, the FCDN_CSM v1 only includes
11 simple input features: (1) three VIIRS measurements—M12, M15, and M16 brightness
temperatures (BT), and two geophysical parameters—satellite zenith angle (SZA) and
solar zenith angle (SOZA), which are from VIIRS sensor data record (SDR) products; (2)
three atmosphere parameters—total water vapor contents (CWV), integrated from the
water vapor profiles of ECMWF [3], and surface air temperature (SAT) and surface water
vapor contents (SWV), extracted from the surface layer of the ECMWF temperature and
water vapor profiles; (3) two surface parameters—the regression SST (REG_SST) derived
from the M12, M15, and M16 BTs with the SST coefficients trained by the NOAA SST
team [4], and the reference SST (REF_SST) from CMC 0.1◦ daily SST analysis; and (4) a SST
spatial variance (SSV) to represent CSM spatial variability, which was calculated by a 3 × 3
moving window for each pixel. The updated ACSPO CSM data was used as reference
labels, which ACSPO version 2.4 updated to allow the CRTM simulation to be conducted
at the pixel level instead of in the coarse grid, thus significantly improving the VIIRS O-M
biases [22]. Four CSM types (Clear-Sky for BT (CS_BT), Probably Clear-Sky (PCS), Cloud,
and Clear-Sky for SST (CS_SST)) constitute the output layer, where CS_BT represents the
clear-sky pixels that passed both SST and BT tests, and CS_SST represents the CS pixels
that passed the SST test but did not pass the BT test [1]. A cross-entropy loss was used as
the cost function of the model. As described in the previous section, although the model
was relatively simple, the validation result showed high prediction accuracies after the
model was well-trained using selected VIIIRS SDR data and other ancillary data for ten
continuous days. Furthermore, the FCDN_CSM used three atmosphere parameters from
ECMWF as model inputs to replace three CRTM BTs in M12, M15, and M16, rendering
CSM prediction significantly more efficient than the ACSPO. Therefore, FCDN_CSM is
manifestly a better choice as clear-sky identification for the FCDN_CRTM.

Although the FCDN_CSM v1 could well predict the CSM for several days immediately
following the training data period, as can be imagined using ten continuous days VIIIRS
SDR data, the model input cannot cover atmospheric and surface state variations for all
seasons, which include diurnal and seasonal cycles, and possible climate extremes. An
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offline analysis showed that the model prediction accuracy was significantly degraded
beyond three weeks of the acquisition of the training data period. Thus, the stability of the
model must be improved for the FCDN_CRTM study and also for long-term monitoring of
the VIIRS O-M biases.

2.2. FCDN Clear-Sky Mask Review and Enhancement

To further improve the robustness of the FCDN_CSM model and enhance its use for
more general remote sensing applications, we retrained the model using VIIRS data from
six dispersion days: 10 March, 5 May, 1 August, 12 October, and 6 November 2019, and
24 January 2020, providing there is at least one day’s data in each of four seasons. Because
the size of the PCS and CS_SST pixels is about one order of magnitude smaller than the
Cloud and CS_BT, to make the model more intuitive, we combined PCS and CS_SST as one
type in the FCDN_CSM v2, defined as Transition, to indicate that the pixel is in transition
between CS and Cloud. In addition, we renamed type CS_BT as CS, because the CS_BT is
the exact CS type we needed to use to identify clear-sky pixels for the VIIRS O-M biases
monitoring and for the FCDN_CRTM prediction.

The input features in FCDN_CSM v2 were kept almost the same as v1, except that
the solar zenith angle was removed, because it is not used for nighttime clear-sky identifi-
cation [1]. Although v1 was only designed for nighttime, in this study, v2 was designed
for both day and night. Because the cloud and clear-sky radiometric characteristics differ
between day and night [1,10,11], several changes in input features were needed. First, due
to daytime solar reflection contamination, the M12 BTs could not be used. As a substitute,
the reflectances of two visible bands (M5 and M7) were used as model inputs. Second, the
reflectance changes in visible bands in sun-glint areas are rapid, which may affect the CS
identification. Therefore, a glint-angle spatial variance (GSV) calculated from a 10 × 10
moving window around each pixel was used as a daytime input feature to assist the CS
identification in the glint area. According to the daytime analysis in [24], we assumed the
glint region is an area where the glint angles are less than 40◦. Furthermore, the ACSPO
CSM was still used to provide reference labels because we did not include land analysis in
this study. Finally, because the FCDN_CSM used the updated ACSPO V2.4 as reference
labels, it thus followed ACSPO and used a 90◦ solar zenith angle as day/night boundary
condition [4]. Note that the ultimate goal of the FCDN_CSM is to assist validation of
the congruence between the FCDN_CRTM prediction and the CRTM simulation, where
the significantly more uniformly distributed ocean is the first choice for this application,
rather than land. The land has diverse structures, for which the CRTM simulations are
more complicated than those of the ocean, and an accurate global land emissivity model
is needed [25,26]. Indeed, including global land analysis in FCDN_CSM is vital for land
remote sensing applications, and will undoubtedly be implemented in the future using
the NOAA enterprise cloud mask (ECM) as references [27]. The input features for day and
night are listed in Table 1, and a summary of the VIIRS bands used in this study is listed in
Table 2 to help understand the wavelength and spectral range for each band.

Table 1. Summary of input features and output clear-sky mask (CSM) types in the fully connected deep neural network
CSM (FCDN_CSM) v2.

Day Night

Common Input Features
Satellite Zenith Angle (SZA), Column Water Vapor Contents (CWV), Surface Air

Temperature (SAT), Surface Water Vapor contents (SWV), M15 BT, M16 BT, Regression
SST (REG_SST), Reference SST (REF_SST), SST Spatial Variance (SSV)

Input Features Only for Day or Night M12 BT

M5 albedo
M7 albedo

Glint-angle spatial variance (GSV)
Solar Zenith Angle (SOZA)

Output CSM Types Clear-Sky, Transition, Cloud
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Table 2. Summary of the VIIRS bands used in the FCDN_CSM v2.

Band Number Wavelength (µm) Spectral Range (µm) Primary Uses

M5 0.672 0.662–0.682 Day
M7 0.865 0.846–0.885 Day
M12 3.70 3.660–3.840 Night
M15 10.763 10.263–11.263 Day and Night
M16 12.013 11.538–12.488 Day and Night

Because the input data cover all seasons and more features are used for daytime, a
more complex FCDN model is required to achieve adequate learning of the CSM texture
during the model training. Based on the multiple experiments, we finally selected an
architecture including three hidden layers with 32 × 64 × 16 neurons for both night and
day, together with a rectified linear unit (ReLU) as an activation function for each hidden
layer. In addition, a regularization was introduced in the loss function (cost function) to
avoid model overfitting [28]. The equation of the cost function is slightly different from
that of v1:

J(ŷ, y) =
1
N

N

∑
n=1

(−ylogŷ + (1− y) log(1− ŷ)) + λ
m

∑
k=0
||W2

k || (1)

As described in version 1, y represents reference labels from three ACSPO CSM types
shown in Table 1. ŷ represents the prediction results. N is the size of the mini batch. The
symbol λ refers to the regularization coefficient, which is called hyperparameter in typical
deep learning architecture. It is used to decide how much to penalize the flexibility of
our model. As the value of λ rises, it reduces the value of the weights and thus reduces
the variance of y− ŷ. To a point, this increase in λ is beneficial because, by reducing the
variance, we avoid overfitting, without losing important properties in the data. However,
beyond a certain value, the model begins to lose important properties, giving rise to bias
and thus underfitting. Therefore, the value of λ should be carefully selected [28]. In this
study, we selected λ to be 0.0001.

2.3. FCDN_CSM Preprocessing and Training

The VIIRS SDR data, together with the ECMWF and 0.1◦ daily CMC SST, were selected
for data preprocessing. During data preprocessing, the ECMWF and CMC gridding data
were interpolated with time and space to match the VIIRS pixel. Then, the CWV, SAT, and
SWV were calculated from the ECMWF atmosphere profiles. The regression SSTs were
retrieved from the VIIRS M12, M15, and M16 BTs and the SST coefficients generated by
the NOAA STAR SST team [1]. The SSV is calculated from the SST variance with a 3 × 3
moving window. As with SSV, the GSV is calculated from a 10 × 10 moving window
around each pixel. All input data were generated after screening out the land, snow, and
ice pixels, using the 1 km land mask product from the United States Geological Survey
(USGS) (https://lpdaac.usgs.gov/products/gfsad1kcmv001/), and sea ice fraction from
the CSM SST product. Although ice and snow can also be trained and predicted by AI
models [15], we experienced more than 10% misidentification for this portion, which would
significantly affect later FCDN_CRTM prediction accuracy. Therefore, in this study, we
used the CMC ice data instead of direct prediction.

Roughly 40 million samples were accumulated after data preprocessing. The samples
were further separated into training, validation, and testing data sets, at a ratio of 90:5:5. The
sample data were randomly shuffled and normalized before being fed into the FCDN_CSM,
and the number of iterations was extended to 2.4 million to make the cost function converge
adequately. The trained model was also checked with the test data to ensure overfitting
did not occur. Model training and testing were separated by day and night. The data
preprocessing, training, and testing were similar to those of v1, and have been discussed
in detail in [14]. The only difference is that the number of iterations during v2 training

https://lpdaac.usgs.gov/products/gfsad1kcmv001/
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was more than that of v1 before reach the point that the model weights and biases were
well-optimized, due to the more complex architecture in v2. Therefore, in the next section,
we focus on model evaluation by the prediction data.

3. Accuracy and Stability of the FCDN_CSM v2

The well-trained FCDN_CSM v2 was used to predict six days of data between 21 Febru-
ary 2020 and 30 July 2020. In this section, the prediction results were used to evaluate the
accuracy and stability of FCDN_CSM v2 using the statistical and physical analysis methods
through the F-scores and O-M biases.

3.1. Accuracies Assessment with F-Score

The F-score is a measurement commonly used to evaluate the performance of binary
or multi-classification problems [29,30]. It is the harmonic mean of the precision and recall,
where the recall is the fraction of all actual positives that are predicted to be positive, and
precision is the fraction of all positive predictions that are actual positives. The equations
of the recall (R), precision (P), and F-score (Fβ) are listed as follows:

R =
TP

TP + FN
(2)

P =
TP

TP + FP
(3)

Fβ =

(
β2 + 1

)
∗ R ∗ P

R + β2P
(4)

where TP, FN, and FP denote true positive, false negative, and false positive, respectively,
which are represented via a confusion matrix [29]. β is the weighting of R and P. Commonly,
two different methods are used: macro averaging F-score (maF) and micro averaging F-score
(miF), as shown in Equations (5) and (6), respectively, to evaluate the overall performance
of the multiple classifications [31]:

maF =
2 ∗ Pave·Rave

Pave + Rave
(5)

miF =
∑G

i=1 TPi

∑G
i=1 TPi + FP

(6)

where G represents the total number of classifiers. Pave and Rave are average recall and
average precision, respectively, over all classifiers.

Tables 3 and 4 show a summary of recall, precision, miF, and maF, and the corre-
sponding number of actual, correct, and predicted pixels for daytime and nighttime in
21 February 2020. The total numbers of pixels are consistent between daytime and night-
time for each CSM type. However, for each daytime or nighttime, the sample sizes of
the three CSM types are quite different. The number of type Cloud is four and twelve
times more than the CS and Transition, respectively. This imbalance among the classifiers
significantly affects their accuracies. For nighttime, the most accurate is type Cloud, where
recall and precision reach 97.16% and 99.70%, respectively. Following Cloud, type CS also
shows highly accurate recall (96.10%) and precision (93.01%). Type Transition is not as
accurate, particularly for precision (72.26%), mainly due to its much smaller input. Indeed,
because the type Transition constitutes the PCS and CS_SST, which are partly identified by
spatial variability around each pixel [1,11], inadequate consideration of spatial variance
in FCDN_CSM may be a cause of the low accuracy in the Transition. This issue is further
discussed in Section 4. The averages of the miF and maF scores are 96.63% and 91.14%,
respectively. In daytime, both recall and precision are very similar to those of nighttime
for the type Cloud, slightly worse (2–3%) for CS, and further degraded for Transition.
Because the daytime has a more challenging climate, including a pronounced diurnal and
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seasonal cycle and sun glint effect, it is expected that the daytime accuracies are slightly
worse. Finally, as shown in Table 4, the overall miF and maF are 95.27% and 87.19%, respec-
tively, where maF is 4% (91.14–87.19%) smaller than that of nighttime. However, for the
imbalanced classifiers, miF is better able to present the model performance accurately than
maF [31], as the worse accuracy for the small portion in Transition does not significantly
affect the overall model performance. Therefore, both day and night can be considered to
be high accuracies for the model performance according to the miF. Hereafter, maF will
only be used as a reference to assist in the evaluation of the individual classifier accuracy,
particularly for Transition.

Table 3. Summary of evaluation of three CSM types in nighttime, 21 February 2020.

Input Correct Prediction Recall (%) Precision (%)

CS 6,309,189 6,063,150 6,518,594 96.10 93.01
Transition 2,121,462 1,925,740 2,664,887 90.77 72.26

Cloud 29,553,499 28,714,035 28,800,669 97.16 99.70
Total/Average 37,984,150 36,702,925 37,984,150 94.68 88.32

miF and maF (%) 96.63 91.14

Table 4. Summary of evaluation of three CSM types in daytime, 21 February 2020.

Input Correct Prediction Recall (%) Precision (%)

CS 6,623,885 6,106,453 6,782,545 92.19 90.03
Transition 2,283,160 1,832,188 2,802,059 80.25 65.39

Cloud 27,933,110 27,157,602 27,255,551 97.22 99.64
Total/Average 36,840,155 35,096,243 36,840,155 90.00 85.02

miF and maF (%) 95.27 87.19

Figure 1 shows the global distribution of the ACSPO CSM and the FCDN_CSM
prediction on 21 February 2020. The global distributions are quite consistent between the
ACSPO CSM and the FCDN_CSM for both day and night, regardless of the latitude, coastal
area, and sun glint area, which could involve rapid atmospheric and geophysical condition
changes. Both CSMs are also consistent with the day true-color images and night images
for VIIRS monitored on the ICVS web page. Note that the FCDN_CSM mainly focuses
on clear-sky identification for improving the FCDN_CRTM performance. This is slightly
different from cloud mask products, such as the VIIRS cloud mask (VCM) [10,11], which
mainly analyzes cloud types and cloud radiometric characteristics. Therefore, the analyses
of different cloud types are out of scope of this paper. With the exception of the F-score
analyses in this section, we further validated the FCDN_CSM accuracy and stability by
evaluating global O-M mean and standard deviations, and compared them with ACSPO
CSM, as discussed in the next subsection.

3.2. Validation with O-M Biases

An evaluation of the VIIRS radiometric biases with the O-M biases for TEB bands
has been conducted in earlier research [3–6]. Similarly, we used the analysis method of
the O-M biases to evaluate ACSPO CSM [3], where the global O-M biases for TEB bands
were calculated using the ACSPO CSM to identify clear-sky pixels, and the CSM was then
evaluated by the O-M mean biases and STDs. As with the evaluation of ACSPO CSM, we
also used O-M biases to evaluate FCDN_CSM accuracy and stability.

Table 5 shows the global O-M statistics corresponding to Figure 1, using the two CSMs
to identify clear-sky pixels. Due to solar reflection contamination, M12 was not used in
the daytime analysis. The global O-M mean biases of the FCDN_CSM and ACSPO are
comparable for all bands and both day and night, suggesting that the predicted CSM is
unbiased with respect to ACSPO CSM. STDs are also close to those of the ACSPO, although
they are slightly worse for the three long wave IRs (LWIR): M14, M15, and M16. More
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detail about the accuracy of STD is provided below. Figures 2 and 3 further show global
distribution and histograms of the O-M biases for VIIRS M14, M15, and M16 for day and
night using the FCDN_CSM as a clear-sky identification. The global distributions are
uniform and the O-M mean biases in most areas are close to zero for both day and night.
All histograms are Gaussian distributed. The O-Ms in daytime are slightly warmer than at
night, as expected, due to the pronounced daytime diurnal cycle, which was not taken into
account in the CRTM simulation [3].
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 Nighttime Daytime 
 ACSPO FCDN_CSM ACSPO FCDN_CSM 
 µ σ µ σ µ σ µ σ 
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Figure 1. Global distribution of CSM types Advanced Clear-Sky Processor over Ocean (ACSPO) (actual) and FCDN_CSM
(predicted) on 21 February 2020, including Clear-Sky pixels (CS), cloud pixels (Cloud), and transition pixels between
Clear-Sky and Cloud (Trans).
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Table 5. Global O-M statistics for 21 February 2020 day and night in the bands M12–M16 with clear-
sky identification using ACSPO CSM and FCDN_CSM. (µ: O-M mean; σ: O-M standard deviation;
NCSP: the number of clear-sky pixels).

Nighttime Daytime

ACSPO FCDN_CSM ACSPO FCDN_CSM

µ σ µ σ µ σ µ σ

M12 −0.0281 0.2900 −0.0405 0.3146 N/A N/A N/A N/A
M13 −0.5805 0.2500 −0.5894 0.2640 −0.0808 0.4267 −0.0912 0.4265
M14 −0.5246 0.3513 −0.5213 0.3835 −0.3156 0.3477 −0.3141 0.3808
M15 −0.3026 0.4006 −0.2933 0.4370 −0.0736 0.3688 −0.0690 0.4122
M16 −0.3958 0.4760 −0.3812 0.5233 −0.1927 0.4232 −0.1841 0.4797

NCSP 6,309,189 6,518,594 6,623,885 6,782,545
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FCDN_CSM as clear-sky identification for both daytime (left) and nighttime (right).

All global statistics and distribution of O-M biases are generally consistent with those
of ACSPO CSM, with the exception of the STDs, which are slightly worse for LWIRs;
these decreased from 0.032 K in M14 to 0.045 K in M16 in nighttime, and from 0.033 K
in M14 to 0.055 K in M16 in daytime. As shown in the table, one reason for the slight
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STD degradation in LWIRs is because the number of clear-sky pixels predicted by the
FCDN_CSM model ranges from 2.3% (day) to 3.3% (night) larger than that in the ACSPO
CSM, which may attribute to residual cloud in the FCDN_CSM model. However, this is
not the only case. Type Cloud generally occupies ~80% of the total pixels—about four
times larger than type CS and more than ten times larger than type Transition. Although
the Cloud predictions were highly accurate, the 97% recall (Tables 3 and 4) means that
there remains a 3% misidentification, which was distributed to CS or Transition, resulting
in a slight degradation in precision for type CS, and significant accuracy reduction for
type Transition. As a result, ~9% and ~7% pixels were misjudged as CS for day and night,
respectively, as shown in Tables 3 and 4. This clearly does not mean that all misjudgments
in CS are real Cloud or PCS types. An offline analysis of a subset of the 3% misidentification
in Cloud showed that the O-M biases were very close to zero, and more similar to CS than
to Cloud. This indicates that the ACSPO CSM algorithm may be somewhat conservative,
as discussed in [1], resulting in misjudgment of some CS pixels as Cloud in ACSPO, which
was corrected by the FCDN_CSM prediction.

Overall, some room still exists to improve FCDN_CSM in the future. Although one
might think that increasing the amount of Transition and CS in the training data set would
be a solution to improve the identification accuracies of the model, extensive experiments
have been conducted and shown that this is not the case. As we discussed in the previous
subsection, the root source of this cloud misidentification may be inadequate consideration
of the surrounding effects for each pixel in the current FCDN_CSM model, because Cloud
and PCS are partly tested by the radiative variation of the surrounding pixels [1,11]. Further
fine-tuning of the model is needed to improve the CSM identification accuracy, particularly
for the remaining 3% misidentification in the recall for type Cloud. Further discussion
about this issue is provided in Section 4.

Nevertheless, both recall and precision for CS are highly accurate (>90%) for both
daytime and nighttime, and the largest degradation in STDs (~0.055 K) is still within
the range of the FCDN_CRTM validation. Furthermore, similar to the case of v1 [14],
using a NOAA internal Linux server with 100 G memory and 2.2 G multi-core CPUs
and without GPU support, the FCDN-CSM v2 takes about 20 s to generate one day of
CSM (about 0.6 billion pixels), excluding the calculation of CWV and other atmosphere
parameters, whereas the updated ACSPO v2.4 needs more than five hours to obtain the
same CSM product. This high efficiency, together with the high accuracies in F-score and
O-M biases, render the FCDN_CSM a better selection as the clear-sky identification for the
FCDN_CRTM.

3.3. Stability of the FCDN_CSM

To check the stability of the FCDN_CSM, we used FCDN_CSM v2 to predict CSM
and analyzed O-M biases for the other five dispersion days (16 March 2020, 15 April 2020,
16 May 2020, 10 June 2020, and 30 July 2020), which comprise nearly one day per month
selected from March to July in 2020. Including 21 February 2020, a total of six days’ data
were used to evaluate the stability of the FCDN_CSM. Note that all days’ selection was
random. We did not apply any specific conditions to these days. Input, correct, and
F1-score results for type CS, together with corresponding recall, precision, and overall miF,
are listed in Tables 6 and 7. The F1-score is Fβ-score when β is equal to one, giving the same
weight to recall and precision. Note that while miF is used to check overall FCDM_CSM
performance, the other parameters in the tables are only for type CS, as only CS is needed
for the FCDN_CRTM validation.
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Table 6. Summary of the FCDN_CSM daytime predictions for six days’ data.

Input Correct Recall (%) Precision (%) F1-Score (%) miF (%)

21 February 2020 6,623,885 6,106,453 92.18 90.03 91.09 95.27
16 March 2020 6,648,601 6,152,427 92.54 90.06 91.28 94.83
15 April 2020 6,325,957 5,802,787 91.72 89.62 90.66 95.08
16 May 2020 6,321,889 5,823,135 92.11 90.18 91.13 94.75
10 June 2020 5,860,868 5,356,848 91.40 89.25 90.32 95.05
30 July 2020 6,066,212 5,484,928 90.41 89.82 90.11 95.45

Table 7. Summary of the FCDN_CSM nighttime predictions for six days’ data.

Input Correct Recall (%) Precision (%) F1-Score (%) miF (%)

21 February 2020 6,309,189 6,063,150 96.10 93.01 94.53 96.63
16 March 2020 6,438,926 6,180,724 95.99 92.76 94.35 96.31
15 April 2020 6,306,972 6,016,344 95.39 92.18 93.76 95.95
16 May 2020 6,355,016 6,100,474 95.99 92.83 94.38 96.21
10 June 2020 6,031,163 5,782,167 95.87 92.25 94.03 95.96
30 July 2020 5,756,199 5,531,779 96.10 91.78 93.89 96.23

Recall, precision, and F1-score are generally consistent for all five days (both daytime
and nighttime). The typical values are 92%, 90%, and 91% for daytime and 96%, 92%,
and 94% for nighttime, respectively. All statistical values are comparable with the high
accuracies of 21 February 2020, although there are minor degradations with the time in
some parameters at the end of the analysis period. For instance, the maximum degradations
are in daytime recall and nighttime precision, which decreased by ~2.1% and ~1.2% on
30 July 2020—about half a year from the selected training data set. As expected, both
recall and precision for nighttime are 2–4% higher than those of daytime for every analysis
period, making the F1-score and the miF ~3% and ~1% higher. Furthermore, miF persists at
~95% for day and ~96% for night, suggesting not only that the CS type has high prediction
accuracy and stability, but also that Cloud has great accuracy, and both Cloud and Transition
are quite stable in time. The global O-M distributions and corresponding histograms for the
latter five days were similar to those of 21 February 2020—global distributions of the O-M
mean biases are uniform and close to zero, and the corresponding histograms are Gaussian
distributed, as shown in Figures 2 and 3. Figure 4 shows the error bars of the VIIRS O-M
biases for six dispersion days from February to July 2020 for daytime and nighttime, where
the VIIRS clear-sky pixels were identified by FCDN_CSM v2. Two-line statistics values
show the day-to-day means (DDM) and STDs (DDS) of the O-M mean biases and STDs for
each corresponding band, as a check on the temporal and spatial variability of the O-M
biases. The dashed lines represent the DDMs for each band. The O-M mean biases are
consistent with the corresponding DDM lines, with uncertainty within several thousandths
of a Kelvin for both daytime and nighttime, and STD uncertainty is similar. This result
suggests the O-M biases are generally stable over time. This high stability also indicates
that there is no significant overfitting in the FCDN_CSM v2.
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Figure 4. The error bars of the Visible Infrared Imaging Radiometer Suite (VIIRS) O-M biases for six
dispersion days from February to July 2020 for day (upper) and night (bottom). The VIIRS clear-sky
pixels were identified by FCDN_CSM. Two-line statistics values present the day-to-day means (DDM)
and STDs (DDS) of the O-M means and STDs for each corresponding band ordered from M13 to M16
for daytime and from M12 to M16 for nighttime. The dashed lines represent the DDMs for each band.

4. Discussion

Due to the high prediction accuracies, efficiency, and stability, at the time of writing, the
FCDN_CSM v2 has been successfully used for the FCDN_CRTM as clear-sky identification
to predict VIIRS clear-sky radiances for five TEB/M bands. The result was documented
in the companion paper—Part 2 and previously published [23]. In addition, we were also
exploring possible means to improve the model, which is discussed in this section.

As discussed in the previous section, the slightly worse accuracy in type Transition,
mainly resulting from a 3% misidentification from type Cloud, appears to be partly due
to the inadequate consideration of spatial variance in FCDN_CSM, because Cloud and
PCS are partly tested by the variation in the surrounding pixels [1,11]. This raises ques-
tions about how to verify this hypothesis, and whether any potential improvement can
be made to the FCDN_CSM prediction accuracy. Because the FCDN_CSM architecture
is relatively simple, and has only 13 and 10 input features for daytime and nighttime
mode, and multiple experiments have been conducted to tune the number of layers and
neurons and other hyperparameters during the model training and testing, it is unlikely
that the model’s accuracy can be further improved by continued tuning of the model.
Recall that in FCDN_CSM v1, we conducted a sensitivity analysis about the selection of
important features and successfully improved the model’s efficiency without significant
loss of accuracy [15]. Thus, the selection of features may still have the potential to provide
a means to improve FCDN_CSM prediction accuracy and verify our hypothesis above.
Therefore, in this section, we tested a new feature—a root mean square (RMS) of BT dif-
ference, which represents spatial radiative variability in FCDN_CSM, in addition to the
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individual BTs as the model inputs. The BT difference between M15 and M16 (T15–16) was
used for daytime, and the BT difference between M12 and M16 (T12–16) for nighttime. As
is well-known, T12–16 and T15–16 are comprehensively used in the cloud mask algorithm
to assist in the classification of CS and semitransparent clouds, by exploiting radiative
properties of clouds in the thermal IR spectral range [1,11,12]. Both T12–16 RMS (RMS12–16)
and T15–16 RMS (RMS15–16) were calculated from a 40 × 40 moving window around each
pixel. We retrained the model using the same six days’ data as described in Section 2, but
added RMS12–16 for nighttime and RMS15–16 for daytime as a new feature. Figure 5 shows
the changes to the cost functions during the model training with comparison to the cases
without the new feature, which have the same number of input features as the FCDN_CSM
v2 listed in Table 1. It is clear that, in the daytime, the cost functions for the case with the
RMS15–16 are larger in the first 200,000 iterations. However, after the model was trained
adequately, the cost functions became smaller than those without the RMS, and the cost
further declined at the end of the training. For nighttime, the cost function for the case
with the RMS12–16 is persistently smaller than that without the RMS and the amplitude is
significantly larger than that of the daytime. Both cost reductions suggest that the model
biases could be further reduced by adding the RMS12–16 and RMS15–16, and the reduction
in nighttime is more pronounced than that in daytime.

Remote Sens. 2021, 13, x FOR PEER REVIEW 13 of 17 
 

 

in FCDN_CSM v1, we conducted a sensitivity analysis about the selection of important 
features and successfully improved the model’s efficiency without significant loss of ac-
curacy [15]. Thus, the selection of features may still have the potential to provide a means 
to improve FCDN_CSM prediction accuracy and verify our hypothesis above. Therefore, 
in this section, we tested a new feature—a root mean square (RMS) of BT difference, which 
represents spatial radiative variability in FCDN_CSM, in addition to the individual BTs 
as the model inputs. The BT difference between M15 and M16 (T15–16) was used for day-
time, and the BT difference between M12 and M16 (T12–16) for nighttime. As is well-known, 
T12–16 and T15–16 are comprehensively used in the cloud mask algorithm to assist in the clas-
sification of CS and semitransparent clouds, by exploiting radiative properties of clouds 
in the thermal IR spectral range [1,11,12]. Both T12–16 RMS (RMS12–16) and T15–16 RMS (RMS15–

16) were calculated from a 40 × 40 moving window around each pixel. We retrained the 
model using the same six days’ data as described in Section 2, but added RMS12–16 for 
nighttime and RMS15–16 for daytime as a new feature. Figure 5 shows the changes to the 
cost functions during the model training with comparison to the cases without the new 
feature, which have the same number of input features as the FCDN_CSM v2 listed in 
Table 1. It is clear that, in the daytime, the cost functions for the case with the RMS15–16 are 
larger in the first 200,000 iterations. However, after the model was trained adequately, the 
cost functions became smaller than those without the RMS, and the cost further declined 
at the end of the training. For nighttime, the cost function for the case with the RMS12–16 is 
persistently smaller than that without the RMS and the amplitude is significantly larger 
than that of the daytime. Both cost reductions suggest that the model biases could be fur-
ther reduced by adding the RMS12–16 and RMS15–16, and the reduction in nighttime is more 
pronounced than that in daytime.  

 
Figure 5. The changes in cost function for day (upper) and night (bottom) during FCDN_CSM 
training with and without the RMS12–16 or RMS15–16 as a new feature. 

Table 8 shows recall (R) and precision (P) for three CSM types in test data between 
the cases of with and without RMS12–16 and RMS15–16, for both daytime and nighttime. The 
miF and maF are also provided. The precisions of the type Cloud are more than 99.6% for 
all cases and are consistent between the cases with and without the new feature. However, 
for the cases with the new feature, the recall of type Cloud increases 0.45% (97.91—97.46%) 
in daytime and 1.18% (98.18–97.00%) in nighttime. Thus, the misidentification in Cloud is 
reduced from 3% to 2.5% and 1.82% for daytime and nighttime, respectively, which re-
duces the Cloud contamination to the other two types, and thus improves the recall and 

Figure 5. The changes in cost function for day (upper) and night (bottom) during FCDN_CSM training with and without
the RMS12–16 or RMS15–16 as a new feature.

Table 8 shows recall (R) and precision (P) for three CSM types in test data between the
cases of with and without RMS12–16 and RMS15–16, for both daytime and nighttime. The
miF and maF are also provided. The precisions of the type Cloud are more than 99.6% for
all cases and are consistent between the cases with and without the new feature. However,
for the cases with the new feature, the recall of type Cloud increases 0.45% (97.91—97.46%)
in daytime and 1.18% (98.18–97.00%) in nighttime. Thus, the misidentification in Cloud is
reduced from 3% to 2.5% and 1.82% for daytime and nighttime, respectively, which reduces
the Cloud contamination to the other two types, and thus improves the recall and precision
for both CS and Transition, particularly for nighttime. The precision of Transition and CS
increases from 72.04% and 92.94% to 78.17% and 95.51%, respectively. As a result, miF for
the cases with the new feature increases by 0.43% for daytime and 1% for nighttime, and
maF increases by 1% for day and 2% for night. The O-M mean biases and STDs in each
case are listed in Table 9. As expected, the means are comparable between the cases with
and without the new feature, but the STDs are improved for all bands, especially for the
nighttime M16, where the STDs were reduced by 0.04 K. Overall, selection of features is a



Remote Sens. 2021, 13, 222 14 of 17

potential means to improve the model accuracy. Because the FCDN_CSM v2 has been used
for FCDN_CRTM to predict clear-sky radiances for VIIRS TEB/M bands and the related
results have been published [23], and currently the evaluation of this new feature did not
reach full maturity, we decided to add the RMS feature to the next version of FCDN_CSM
(v3), rather than to v2, and the accuracies and stabilities for both ocean and land will be
re-evaluated.

Table 8. Prediction accuracies for test data using FCDN_CSM v2 or FCDN_CSM v2 plus new RMS feature as Clear-Scheme
2. RMS: FCDN_CSM v2 plus new RMS feature).

Daytime Nighttime

FCDN_CSM v2 v2 + RMS15–16 FCDN_CSM v2 v2 + RMS12–16

R (%) P (%) R (%) P (%) R (%) P (%) R (%) P (%)

CS 92.06 90.58 91.46 91.90 95.97 92.94 95.99 95.51
Transition 80.75 67.36 83.66 68.69 89.93 72.04 91.34 78.17

Cloud 97.46 99.60 97.91 99.72 97.00 99.64 98.18 99.60
Total/Average 90.09 85.85 90.82 86.76 94.30 88.20 95.17 91.09

miF (%) 95.37 95.80 96.40 97.40
maF(%) 87.91 88.74 91.15 93.09

Table 9. The O-M mean biases and STDs for test data for VIIRS bands M12–M16 using FCDN_CSM v2
or FCDN_CSM v2 plus new RMS feature as clear-sky identification (µ: O-M mean; σ: O-M standard
deviation; v2+RMS: FCDN_CSM v2 plus new RMS feature).

Daytime Nighttime

FCDN_CSM v2 v2 + RMS15–16 FCDN_CSM v2 v2 + RMS12–16

µ σ µ σ µ σ µ Σ

M12 N/A N/A N/A N/A −0.0270 0.3042 −0.0263 0.2942
M13 −0.1091 0.4649 −0.1059 0.4594 −0.5779 0.2671 −0.5834 0.2660
M14 −0.3597 0.3901 −0.3549 0.3800 −0.5549 0.4008 −0.5617 0.3870
M15 −0.1083 0.4226 −0.1035 0.4116 −0.3242 0.4574 −0.3260 0.4318
M16 −0.2285 0.4867 −0.2228 0.4753 −0.4210 0.5512 −0.4179 0.5149

In addition to prediction accuracy, long-term stability is also a critical factor of the
FCDN_CSM performance that needs to be carefully evaluated. At the time of writing, the
selected prediction data were only accumulated until 30 July 2020, which covered half a
year from the end of the selected training data period. During the whole evaluation period,
the FCDN_CSM v2 showed long-term stability for both O-M mean biases and STDs, and
obviously outperforms v1, for which a period of stability of only several weeks appeared.
Although further validation of the model stability is needed by accumulating recent or
future data, the degradations in daytime recall and nighttime precision in 30 July 2020
(Tables 6 and 7) imply that the stability of the FCDN_CSM v2 may degrade for a more
extended prediction period. Therefore, it is still necessary to consider potential means to
improve future model stability. The discussion below aims to achieve this purpose. First,
time and location, which were not included in the FCDN_CSM v2, may be two potential
features to improve long term stability. Second, we noted that the addition of the new
RMS feature can improve prediction accuracies. It is also possible to improve the stability
by further checking the stability using the other five days’ data. Third, using more data
for training may be another means to improve model stability. In addition, the model
architecture can still be fine-tuned to further avoid model overfitting. Finally, similar to
the case of FCDN_CRTM, retraining the model periodically is also a substitute method to
maintain long-term stability of the model.

One advantage of the FCDN_CSM is migration capability, that is, the NOAA-20 VIIRS
CSM will be predicted directly using the well-trained FCDN_CSM v2 by S-NPP data.
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This advantage has been demonstrated in detail in the FCDN_CSM v1 [14]. Because the
design, data preprocessing, training, and testing for v2 are quite similar to those for v1,
the migration advantage could be applied to v2. Indeed, further quantitative validation
is needed to check the prediction accuracies and stability for NOAA-20, and we will
re-evaluate the migration advantage quantitatively in the next version.

5. Conclusions

An earlier-developed FCDN_CSM was reviewed and enhanced to improve its stability,
in addition to its accuracy and efficiency. This enhanced model is referred to as FCDN_CSM
v2. In addition, daytime analysis was included in v2. The objective was to develop a fast
and robust FCDN_CSM for CS identification for the FCDN_CRTM model. Six dispersion
days of data, covering all seasons, were selected as the model inputs to improve model
stability. Because the input data covers all seasons and more features are used for daytime,
the model architecture was redesigned to include three hidden layers with 32 × 64 × 16
neurons for both nighttime and daytime to be trained adequately. The input features were
extracted from the VIIRS SDR data, in conjunction with ECMWF and CMC SST. The well-
trained model was then used to predict six dispersion days’ data in 2020 as an accuracy
and stability check.

Based on the analyses of the F-score, which is commonly used to evaluate the per-
formance of classification problems, of the three CSM types predicted in the FCDN_CSM
v2, type Cloud was the most accurate, showing ~97% recall and more than 99% precision
for both daytime and nighttime. This was followed by the type Clear-Sky, which showed
~96% recall and ~93% precision in the nighttime, and was ~3% worse in the daytime. The
high prediction accuracies persisted in all prediction days, with the exception of slight
degradations (~2.1% daytime recall and ~1.2% nighttime precision) for the last prediction
day, which lay about half a year from the time of the training data. The O-M mean biases
are comparable with the ACSPO CSM for all bands, as are the STDs of the short-wave IRs
(M12 and M13); whereas the standard deviations (STD) were slightly degraded in long
wave IRs (M14, M15 and M16), indicating that residual cloud or outliers may have existed
in the FCDN_CSM. Thus, further fine-tuning to improve the O-M biases may be required
in the future. An improvement for the model was discussed, which uses an RMS of the BT
difference as a new input feature to represent the spatial radiative variability around each
pixel. Overall, the consistent O-M means and STDs for whole prediction periods proved
that the FCDN_CSM v2 is robust and does not have significant overfitting. Combined with
the excellent F-scores, stability, high efficiency, and allowable STDs, the FCDN_CSM ver-
sion 2 has been successfully used for the FCDN_CRTM to predict VIIRS clear-sky radiances
for five TEB/M bands [23]. Our future work will extend the FCDN_CSM functionalities to
include land analysis.
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